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« XGCI is a gyrokinetic particle-in-cell code ' Deep
solving Boltzmann equation neural —{ Ofi mL J
 Includes 2D (velocity space) solver of network
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operator XGC < - Initial f and change in f (df) obtained from XGC

« Temporal discrefization of derivative in XGC gives df
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« Current runtime for operator scales as _ § i « Can compare actual vs. predicted

O(n?), where n is number of species density/momentum/energy and compute

Propose use of machine learning fo learn : o | conservation loss (as well as L2 loss) Export PyTorch modules to C++
nonlinear fransformation of operator bz =5 2(5fXGC_5fML)2 e ;Ai(x Yo =) Can be implemented as option, with current

* |nvestigate training deep convolutional =l NN Architecture Picard iteration scheme as backup
neural network on XGC distribution : :
U-Net (pictured) — one of fundamental architectures for Can use both algorithms in fandem

function data i . . o . . .
semantic segmentation techniques - can add residuadl ML provides initial guess, Picard iferation

Machine Learning for Computer Vision connections for better learning completes calculation

Image Recognition Downsampling blocks: composed of convolutions followed by Further Work

Max-pooling layers — interspersed with ReLU activations | Test new NN architectures — add residual
Upsampling blocks: composed of convolutions followed by connections — improves learning

T ue up-convolufion layers - also ReLU activations oy andcop Investigate broader collisionality regime

¥ max pool 2x2

End with 1x1 convolutions to decrease depth to | . b upcon 20 * Physics of collision depend on collisionality of

=» conv 1x1

+ Input image: H x W x 3 (3 color channels) Skip connections preserve “original resolution” for learning - species — may need new NN for different

* Network ends with fully-connected layers -2 o . . regimes

XGC Reimplementation (future)

 Perhaps one NN still sufficient with broad

Semantic Segmentation 5 2N ‘ = ReSeq training, 25 epochs, iphi=0 » Initial training done for JET XGC1 data — enough range of training data
e HXWX3->HxWxC AR T ? —— ti272 JET heat load Investigate validity of NN between species

Validation

* Upsample + 2D fully g — B Adam opftimization algorithm — converges faster » Same NN for elecirons and ions<
connected layers | = Consenvation .« Combines “momentum” and “RMS Prop” « Does mass difference imply different enough

« Score each pixel and 25 total epochs collision mechanism such that one NN
C|OSSify | | e |2 and conservation loss both decrease cannot be trained on both (even with one

| i | Validation done every 2000 iterations (~twice per fraining sef for both species)
v‘ | . . .
| | | 'J*,M"nqmm'ﬁnwmm. epoch) Multiple ion species?
* Input £ 32x 31 xn (n species) | VORI AP TR TV Final weights used for testing Even larger mass difference — also charge
- output df: 32 x 31 x 1 (only ! r . T s x difference
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Loss function now composed two * 1e-3:160
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