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Training Schematic
• XGC1 is a gyrokinetic particle-in-cell code 

solving Boltzmann equation
• Includes 2D (velocity space) solver of 

nonlinear Fokker-Planck-Landau collision 
operator

• Current runtime for operator scales as 
O(n2), where n is number of species

• Propose use of machine learning to learn 
nonlinear transformation of operator
• Investigate training deep convolutional 

neural network on XGC distribution 
function data
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Machine Learning for Collision Operator

• Input image: H x W x 3 (3 color channels)
• Network ends with fully-connected layers à

C-dim vector (C scores predicted)
Semantic Segmentation
• H x W x 3 à H x W x C
• Upsample + 2D fully 

connected layers
• Score each pixel and 

classify

Image Recognition

• Input f: 32 x 31 x n (n species) 
à output df: 32 x 31 x 1 (only 
one species for now)

• Preserve spatial structure of 
input to make decision at 
“pixel” level v 
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• Turn binary classification (yes/no) into 
regression (how far off) à no fully connected 
layers at end

• Loss function now composed two 
comparisons between output and target df:
1. Overall L2 loss
2. Conservation of 

density/momentum/energy losses
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• Temporal discretization of derivative in XGC gives df

XGC

• U-Net (pictured) – one of fundamental architectures for 
semantic segmentation techniques - can add residual 
connections for better learning

• Downsampling blocks: composed of convolutions followed by 
max-pooling layers – interspersed with ReLU activations

• Upsampling blocks: composed of convolutions followed by 
up-convolution layers - also ReLU activations

• End with 1x1 convolutions to decrease depth to 1
• Skip connections preserve “original resolution” for learning

NN Architecture

• Initial f and change in f (df) obtained from XGC 
collision kernel

• Phase-space volume of velocity bins and 
temperature also extracted from XGC
• Can compare actual vs. predicted 

density/momentum/energy and compute 
conservation loss (as well as L2 loss)

• Test new NN architectures – add residual 
connections – improves learning

• Investigate broader collisionality regime
• Physics of collision depend on collisionality of 

species – may need new NN for different 
regimes

• Perhaps one NN still sufficient with broad 
enough range of training data

• Investigate validity of NN between species
• Same NN for electrons and ions?
• Does mass difference imply different enough 

collision mechanism such that one NN 
cannot be trained on both (even with one 
training set for both species)

• Multiple ion species?
• Even larger mass difference – also charge 

difference 

• Initial training done for JET XGC1 data –
ti272_JET_heat_load

• Adam optimization algorithm – converges faster
• Combines “momentum” and “RMS Prop”

• 25 total epochs 
• L2 and conservation loss both decrease

• Validation done every 2000 iterations (~twice per 
epoch)

• Final weights used for testing

Preliminary Testing Results
• Maximum L2 error out of (16668 testing points): 0.0389
• Percentage of points with error below:
• 1e-1: all
• 1e-2: 13248
• 1e-3: 160

• Maximum conservation error:
• Density: 1.976e-02 (mean: 1.610e-04)
• Momentum: 1.261e-01 (mean: 1.217e-03)
• Energy: 1.040e-03 (mean: 1.977e-05)

• Export PyTorch modules to C++ 
• Can be implemented as option, with current 

Picard iteration scheme as backup
• Can use both algorithms in tandem
• ML provides initial guess, Picard iteration 

completes calculation
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